C Pointers

An Advanced Introduction to
Unix/C Programming

Dennis Ken Linus Richard Brian
Ritchie Thompson Torvalds Stallman Kernighan

John Dempsey
COMP-232 Programming Languages
California State University, Channel Islands

Pointer Advantages

* Pointers are important!
* Pointers can reduce the size of and increase the execution speed of a program.
* Pointers allow you to allocate/deallocate memory while the program is running.

* Pointers allow you to save memory by passing only the address of an object instead of
copying all of the data contained in the object.

 There is a closer association between pointers and the underlying hardware. In many
engineering applications, low-level hardware interactions should be as close as
possible.

COMP-232 Programming Languages p)

Pointer Disadvantages

* Pointers add complexity to the code.
* Segmentation violations will occur if pointers are not initialized.

* Using pointers set to the wrong location can cause crazy, hard to debug
problems and corrupt memory.

* Memory leaks may occur if memory is constantly being allocated, but
never freed. If left unchecked, you’ll run out of memory and program

will crash.

* It’s your responsibility to set pointers carefully and manage allocated
memory.

COMP-232 Programming Languages 3

Pointers

int age = 18;

1000 1001 1002 1003 1004 1005

A R

L)

age

 When you declare a variable, like “int age;”, the compiler allocates memory for
the variable with a unique address to store the variable. You don’t know, nor
need to know, the variable’s actual address.

* The compiler associates the memory address with the variable’s name.

* When the variable is used, the program accesses the memory location in order to
read or write the variable’s value.

COMP-232 Programming Languages 4

Pointers

int age = 18;

int *age_ptr; < The * indicates age_ptr will hold a pointer to an integer variable.
1000 1001 1002 1003 1004 1005
? 18
age_ptr age

* An address is just a number and can be treated like any other number.

* To create a pointer, you need to declare a second variable to hold the address of
the first variable.

* Declaring age_ptr above allocates space to hold an address to any variable
defined as an integer. age ptr has not yet been initialized, is NOT defined to hold
an integer value, but is defined to point to an integer type.

COMP-232 Programming Languages)

Pointers

int age = 18;
int *age_ptr;

1000 1001 1002 1003 1004 1005

age_ptr age

* To initialize age_ptr, we set age_ptr to the memory address of where age is stored, which in this
case is the address of 1004, by using:

age_ptr = &age;

* age_ptr now points to age or is a pointer to age, because age_ptr holds the address of where age
is stored in memory.

COMP-232 Programming Languages 6

Pointers

* Pointers can point to different data types, like int, float, and typedef struct,
using the following format:

data_type *name_of ptr;

e.g.
int *age ptr;

* The * is the indirection operator.

* The * indicates the variable name_of_ptr is a pointer to a data_type
variable, e.g., age_ptr can be a pointer to any variable defined as an int.

* name_of_ptr can hold an address pointing to a data_type.

COMP-232 Programming Languages

Pointer Declaration Examples

int trip, *trip_ptr; < Pointer to an integer value.
double percent, *percent_ptr; < Pointer to a double value.

typedef struct person_struct {
char first_name[15];

char last_name[25];

float age;
} PERSON;
PERSON person, *person_ptr; < Pointer to a PERSON struct.

COMP-232 Programming Languages 8

Pointers — You Must Initialize Pointers!

* Pointers are not initialized. To initialize a pointer to point to a variable, you can

use:
pointer = &variable;
e.g.,
trip_ptr = &trip;
percent_ptr = &percent;
person_ptr = &person;

* The & copies the memory address where variable is stored into the pointer
variable.

* Note how the & looks like the letter A and ampersand starts with the letter A,
which | like to think represents the Address Of.

COMP-232 Programming Languages 9

Pointers — How To Use

* Once a pointer has been defined and initialized, you can use them.

To print out the value of age, you can use:

printf(“age = %d\n”, age); < Direct Access

or
printf(“age = %d\n”, *age_ptr); < Indirect Access (or Indirection)

The address of age can be printed using:

printf(“age_ptr = %p or &age = %p\n”, age_ptr, &age);

COMP-232 Programming Languages

Pointers — Program to Print Value & Address

john@oho:~$ cat pointer.c
#include <stdio.h>
int main()
{
int age=18;
int *age_ptr;

age_ptr = &age;

printf("age = %d or *age = %d\n", age, *age_ptr); // Direct Access

printf("The address of age_ptr = %p or &age = %p\n", age_ptr, &age); // Indirect Access
}

john@oho:~$ gcc pointer.c; a.out

age =18 or *age = 18

The address of age_ptr = 0x7fffd5dc914c or &age = 0x7fffd5dc914c

john@oho:~$ a.out

age = 18 or *age =18

The address of age_ptr = Ox7ffffcdae50c or &age = Ox7ffffcdae50c < Note: The address of age can change
john@oho:~$ a.out

age = 18 or *age = 18

The address of age_ptr = Ox7fffdcf7ef4c or &age = Ox7fffdcf7eflc < Change each time the program is run.

COMP-232 Programming Languages

11

Pointers

Different data types define data of different sizes, e.g., a char is 1 byte,
a short int is 2 bytes, an int is 4 bytes, and a struct is a fixed size.

But pointers are smart! A pointer will (1) point to the first byte of the
data and (2) the compiler remembers the type of data being pointed to,

and as such, knows its size.

1000 1001 1002 1003 1004 1005

o T T e

L)

L)

char_ptr (1 byte @ 1000) short_ptr (2 bytes @ 1004)

COMP-232 Programming Languages

Pointers

When using arrays, you’re actually using pointers.

To initialize numbers_ptr to the first element of the numbers array, you
can:

int numbers[10], *numbers_ptr;

numbers_ptr = numbers;
or

number_ptr = &numbers|0];

COMP-232 Programming Languages

Pointers — Memory Addresses For Different Types

john@oho:~$ cat pointer2.c
#include <stdio.h>
int main()

{

typedef struct person_struct {
char first_name[10];
char last_name[20];
int age;

} PERSON;

i;
int integer_array[10];
PERSON person_array[10];

printf("size of i = %ld\n", sizeof(int));
printf("size of PERSON = %ld\n", sizeof(PERSON));

for (i=0; i<10; i++) {
printf("Address of integer_array[%d]=%p,
person_array[%d]=%p\n",
i, &integer_array[i], i, &person_arrayl[il);

john@oho:~$ gcc pointer2.c; a.out

sizeofi=4

size of PERSON = 36

Address of integer_array[0]=0x7fffccf41c40, person_array[0]=0x7fffccf41c70
Address of integer_array[1]=0x7fffccf41c44, person_array[1]=0x7fffccf41c94
Address of integer_array[2]=0x7fffccf41c48, person_array[2]=0x7fffccf41cb8
Address of integer_array[3]=0x7fffccf41cdc, person_array[3]=0x7fffccf41cdc
Address of integer_array[4]=0x7fffccf41c50, person_array[4]=0x7fffccf41d00
Address of integer_array[5]=0x7fffccf41c54, person_array[5]=0x7fffccf41d24
Address of integer_array[6]=0x7fffccf41c58, person_array[6]=0x7fffccf41d48
Address of integer_array[7]=0x7fffccf41c5c, person_array[7]=0x7fffccf41d6c
Address of integer_array[8]=0x7fffccf41c60, person_array[8]=0x7fffccf41d90
Address of integer_array[9]=0x7fffccf41c64, person_array[9]=0x7fffccf41db4

The integer_array increments by 4 bytes because an int is 4 bytes.

The PERSON struct is 36 bytes, but increments by 24 bytes. Why?

COMP-232 Programming Languages 14

Pointers — Addresses By Incrementing Pointers

#include <stdio.h>
int main()

{

typedef struct person_struct {
char first_name[10];
char last_name[20];
int age;

} PERSON;

int i

int integer_array[10];

int *integer_array_ptr;
PERSON person_array[10];
PERSON *person_array_ptr;

integer_array_ptr = &integer_array[0];
person_array_ptr = person_array;

for (i=0; i<10; i++) {
printf("Address of integer_array[%d]=%p,

person_array[%d]=%p\n",

i, integer_array_ptr, i, person_array_ptr);
integer_array_ptr++;
person_array_ptr++;

}

john@oho:~$ gcc pointer3.c; a.out

Address of integer_array[0]=0x7fffef2b7c10, person_array[0]=0x7fffef2b7c40
Address of integer_array[1]=0x7fffef2b7c14, person_array[1]=0x7fffef2b7c64
Address of integer_array[2]=0x7fffef2b7c18, person_array[2]=0x7fffef2b7c88
Address of integer_array[3]=0x7fffef2b7cl1c, person_array[3]=0x7fffef2b7cac

Address of integer_array[4]=0x7fffef2b7c20, person_array[4]=0x7fffef2b7cd0
Address of integer_array[5]=0x7fffef2b7c24, person_array[5]=0x7fffef2b7cf4

Address of integer_array[6]=0x7fffef2b7c28, person_array[6]=0x7fffef2b7d18
Address of integer_array[7]=0x7fffef2b7c2c, person_array[7]=0x7fffef2b7d3c
Address of integer_array[8]=0x7fffef2b7c30, person_array[8]=0x7fffef2b7d60
Address of integer_array[9]=0x7fffef2b7c34, person_array[9]=0x7fffef2b7d84

integer_array_ptr increments by 4 bytes in hex.

person_array_ptr increments by 24 bytes in hex.

COMP-232 Programming Languages 15

Pointers

* An array name without brackets points to the array’s first value.

e As such ...
*(array) == array[0]
*(array+1) == array[1]

*(array+2) == array[2]

*(array+n) == array|[n]

< Both point to the value held in array[0]
< Both point to the value held in array]
< Both point to the value held in array[2]

L Hl

< Both point to the value held in array[n]

COMP-232 Programming Languages

Pointers — Function Calls

* There are two ways to pass arguments to a function:

1. By Value
2. By Reference

* To pass an array, you can simply provide the name of the array to the
function, which is call by reference.

* Strings are passed from one function to another using the address of
the first character, not as the whole array.

COMP-232 Programming Languages

Pointers — Passing An Array To Function

#include <stdio.h> int main()
#include <string.h> {

i-
typedef struct person_struct { . N 101:
char first_name[10]; int integer_array[10];

char last_name[20]; PERSON person_array[10];
int age; PERSON *person_array_ptr;
} PERSON;

person_array_ptr = person_array;
void print_integer_array(int my_int_array[], int count)

t int i for (i=0; i<10; i++) { // Initialize integer and person arrays.

for (i=0; i<count; i++) integer_array[i] = i;
printf("print_integer_array: my_int_array[%d] = %d\n", sprintf(person_array_ptr->first_name, "John%d", i);
i, my_int_array(i]); sprintf(person_array_ptr->last_name, "Smith%d", i);
} person_array_ptr->age = i+10;

* .
erson_arra tr++
void print_person_array(PERSON my_person_array[], int count) P = y-P ¢

{

int i
for (i=0; i<count; i++) print_integer_array(integer_array, i);
printf("print_person_array: %d. first_name=%s, last_name=%s, age=%d\n",
iy print_person_array(person_array;, i);
my_person_array[i].first_name,
my_person_array[i].last_name,

my_person_array[i].age);

COMP-232 Programming Languages 18

Pointers

john@oho:~$ gcc pointer_function.c; a.out

print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_integer_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:
print_person_array:

my_int_array[0] =0
my_int_array[1] =1
my_int_array[2] = 2
my_int_array[3] =3
my_int_array[4] =4
my_int_array[5] =5
my_int_array[6] =6
my_int_array[7] =7
my_int_array[8] = 8
my_int_array[9] =9

0. first_name=John0, last_name=Smith0, age=10
1. first_name=Johnl, last_name=Smith1, age=11
2. first_name=John2, last_name=Smith2, age=12
3. first_name=John3, last_name=Smith3, age=13
4. first_name=John4, last_name=Smith4, age=14
5. first_name=John5, last_name=Smith5, age=15
6. first_name=John6, last_name=Smith6, age=16
7. first_name=John7, last_name=Smith7, age=17
8. first_name=John8, last_name=Smith8, age=18
9. first_name=John9, last_name=Smith9, age=19

COMP-232 Programming Languages

19

Calling Function Using Pointers

john@oho:~/LAB4/CALCS more c.c
#include <stdio.h>

void myProc(int);
void myProc2(int);

void myCaller(void (*)(int), int);
int main(void) {

myProc(1);

myProc2(2);

myCaller(myProc, 3);
myCaller(myProc2, 4);

return 0;

void myCaller(void (*f)(int), int param) {
(*f)(param); // call function *f with param

}

void myProc(int d) {
printf("In myProc().\tParameter = %d\n", d);
}

void myProc2(int d) {
printf("In myProc2().\tParameter = %d\n", d);
}

john@oho:~/LAB4/CALCS gcc c.c;a.out
In myProc(). Parameter=1
In myProc2(). Parameter =2
In myProc(). Parameter =3
In myProc2(). Parameter =4

COMP-232 Programming Languages 20

	Slide 1: C Pointers An Advanced Introduction to Unix/C Programming
	Slide 2: Pointer Advantages
	Slide 3: Pointer Disadvantages
	Slide 4: Pointers
	Slide 5: Pointers
	Slide 6: Pointers
	Slide 7: Pointers
	Slide 8: Pointer Declaration Examples
	Slide 9: Pointers – You Must Initialize Pointers!
	Slide 10: Pointers – How To Use
	Slide 11: Pointers – Program to Print Value & Address
	Slide 12: Pointers
	Slide 13: Pointers
	Slide 14: Pointers – Memory Addresses For Different Types
	Slide 15: Pointers – Addresses By Incrementing Pointers
	Slide 16: Pointers
	Slide 17: Pointers – Function Calls
	Slide 18: Pointers – Passing An Array To Function
	Slide 19: Pointers
	Slide 20: Calling Function Using Pointers

